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ABSTRACT: Some of the practical aspects of long-term calibration-set building are presented in this study. A calibrationmodel able
to predict the Kolbach index for brewing malt is defined, and four different validations and resampling schemes were applied to
determine its real predictive power. The results obtained demonstrated that one single performance criterionmight be not sufficient
and can lead to over- or underestimation of the model quality. Comparing a simple leave-one-sample-out cross-validation (CV) with
two more challenging CVs with leave-N-samples-out, where the resamplings were repeated 200 times, it is demonstrated that the
error of prediction value has an uncertainty, and these values change according to the type and the number of validation samples.
Then, two kinds of test-set validations were applied, using data blocks based on the sample collection’s year, demonstrating that it is
necessary to consider long-term effects on NIR calibrations and to be conservative in the number of factors selected. The conclusion
is that one should be modest in reporting the prediction error because it changes according to the type of validation used to estimate
it and it is necessary to consider the long-term effects.
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’ INTRODUCTION

Near infrared spectroscopy (NIR) is a nondestructive and
rapid technique increasingly applied for food quality evaluation.
It is a type of vibrational spectroscopy that employs photon
energy in the range 2.65� 10-19 to 7.96� 10-20 J, which corre-
sponds to the wavelength range 750 to 2,500 nm (wavenumbers
13,300 to 4,000 cm-1).1 NIR measures overtones and combina-
tions of the molecular vibrational modes, principally those
involving hydrogen atoms.2 It presents many advantages over
the other instrumental techniques for food and beverage analysis.
For example, the low absorbance of bands is compatible with
using moderately concentrated samples in combination with
longer path lengths as compared to other spectroscopic techni-
ques such as fundamental infrared (IR). These path lengths
enable spectra to be measured by transmission through intact
materials. Moreover, NIR spectra of intact, opaque, biological
samples can be obtained by diffuse reflection so that no special
cell need be used. This allows rapid, low-cost and nondestructive
analysis because any form of sample preparation can be avoided
or replaced by very simple procedures like grinding.3 Further-
more, NIR optical materials and the low absorbance of water,
compared to e.g. IR, make the region eminently suitable for the
analysis of samples with a high content of water such as foods and
beverages.4,5 In the brewery industries, NIR spectroscopy is
intensely applied to the quality control of raw materials6,7 and
intermediate and end products.8,9

However, despite the many instrumental and spectroscopic
advantages, there are some issues surrounding the use of NIR in
process monitoring and control in food production. NIR is an
indirect semiquantitative method that is extremely reproducible
under controlled conditions for getting a physiochemical finger-
print of the identity of the biological individual: the specific seed

sample.10 However, because of the high reproducibility and the
low selectivity of this method, we need advanced data-handling
(chemometrics) to make methods work. A direct consequence is
that we need a relatively large number of training samples—both
spectra and the desired reference sample—to build a regression
model, and this training set should not only vary in the quantity
of interest but should also “span” contributing factors such as
genetics, growth conditions, seasonal variation, harvesting, stor-
age and production technology. This especially holds for natural
products such as food raw materials in open biological processes
where the composition cannot be exactly predetermined. This is
in contrast to humanly controlled processes where it is possible
to generate synthetically composite materials based on recipes.
This is why multivariate models in food processes can take years
to build and/or improve up to a desirable level. The lack of
selectivity in the multivariate NIR signal and the time span for
model building can be problematic when other (unwanted)
sources of variation are present in the data such as (small)
changes in the instrumental response over time. It leads to two
strict requirements in proper data analysis: correct preprocessing
and model validation. The first subject is well studied and entails
both hardware aspects (e.g., computing NIR absorbance values
against a stable, recently collected reference material) and data
treatment (e.g., removing baseline shifts by signal derivation);11

the second aspect (the biological basis of data in choosing
mathematical solutions) does not always get the attention it
deserves and is the main subject of this paper.
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The aim of this work was to define a calibration model able to
give a sufficiently accurate prediction of the Kolbach index (NK)
parameter by means of NIR on the flour of malt samples destined
for brewing. The NK parameter is a good indicator for the
modification of the malt. It is defined as the ratio between the
soluble and total nitrogen:

NK ¼ NS 3 100
N

ð1Þ
NS is soluble nitrogen and N is total nitrogen, both expressed as
percentage of dry matter in the flour.12 NIR was chosen as a
versatile overview of the whole physiochemical composition and
as a potential substitute of the labor intensive reference method
due to its ease of measurement and sample introduction, rapid
response time and nondestructive nature. The task in this
research was to investigate different validation strategies in the
development of calibration models for the prediction of the
parameter of interest, NK, in order to define the real predictive
power of the calibration and to check the long time stability of
our NIR calibration models using process samples collected over
different years. We emphasized model performance/validity
using different figures of merit, based on different resampling
schemes in order to show that one single performance criterion
might be insufficient and can sometimes lead to over- or under-
estimation of the model quality. The final goal was therefore to
determine a realistic error of prediction, through the comparison
between the results of the different validations.

’MATERIALS AND METHODS

Samples. Malt samples were supplied from different industrial
malt-houses and mills, and are representative of the ones available on
the Italian market. 316 samples of pale malt were collected during 2006
(118), 2007 (129), 2008 (37) and 2009 (32).
Sample Preparation and Spectral Acquisition. Malt grain

samples (∼1 kg) were homogenized bymeans of a sample divider (VLB,
Berlin, Germany) and finely ground by means of a DLFU type disk
mill set at a distance between the disks of 0.2 mm (Bh€uler, Uzwil,
Switzerland). The flours were used to record the spectra (Vector 22/N
FT-NIR spectrometer system, equipped with a tungsten source, Rock-
solid interferometer, fiber-optic module equipped with Ge-diode detec-
tor and an integrating sphere module equipped with PbS detector for
spectra acquisition in diffuse reflectance mode, Bruker Optics, Milan,
Italy) and to carry out the reference analyses. All log(1/R) spectra were
recorded on a quartz-bottomed cup (4 cm inner diameter) placed on the
integrating sphere optics and, to compensate for the lack of homo-
geneity, the sample was spinning during the measurement (10 rpm).
Absorption spectra were collected at room temperature against a gold-
coated background by means of the OPUS software (version 5.5 or 6.5,
Bruker Optics) in the spectral range of 11,500-4,000 cm-1 (900-2500
nm) with a resolution of 8 cm-1 using 64 scans for averaging (the same
number of scans was used for the background). In order to correct the
long-term drifts affecting the reflectance/absorbance spectrum, due to
changes in the water and CO2 content in the optical path of the
instrument, one reference background was collected for each sample,
to calculate the sample absorbance spectrum, by using the ratio between
the sample and reference signals.
NIR Instrument Validation. During the four years of this study

the NIR spectrometer was subject to different checks to test the stability.
On day-to-day basis a “Performance Qualification test protocol” (PQ;
version 5.5 or 6.5, Bruker Optics) has been applied to ensure that the
instrument was working properly. This test compares the measured data
to a set of reference data which have been recorded after installation,
major repair or exchange of optical components. The single tests

performed during a PQ are as follows: Deviation from 100% Line;
Interferogram Peak Amplitude, Energy Distribution (Single-Channel
Spectrum), X-Axis Frequency Calibration Test (Wavenumber accuracy)
and Y-Axis Reproducibility Test (Photometric Accuracy). Through
these tests, it is possible to detect changes in the source power. On
the basis of the PQ results it was determined necessary to change the
lamp every year. In this way, it was possible to avoid fluctuation in the
spectra due to the natural change in the light source intensity. A new
reference spectrum was measured after changing to establish a new PQ.
Reference Analyses. Standard methods from the Analytica Euro-

pean Brewery Convention (A-EBC) were used as reference analyses
(Foss Tecator Disgestor, Foss, Hillerød, Denmark; 2200 Kjeltec Auto
Distillation Unit, Foss, Hillerød, Denmark; Laborota 4600 ECO Hei-
dolph, Schwabach, Germany). Total nitrogen for all malts (Kjeldhal;
A-EBC 4.3.1) was determined with reproducibility (R95) and the
repeatability (r95) of the method (probability of 95%) at 0.13% m/m
and 0.05%m/m respectively. The extended uncertainty, calculated from
the R95 value following the UNICHIM guidelines for the validation of
analytical chemical methods,15 was 0.1%. The Standard Error of the
Laboratory (SEL), calculated from the r95 value following the ASTM
practice E 1655-01 for quantitative NIR analysis,16 was 0.0172%.13

Soluble nitrogen in all malts (Kjeldhal; A-EBC 4.9.1) was determined
with R95 and the r95 of the method at 0.09% m/m and the 0.04% m/m,
respectively (extended uncertainty 0.07% and SEL 0.0138%).14 The R95
and the r95 for the Kolbach index determination were not available in the
reference method, so the authors decided to consider the data resulting
from a collaborative trial of 30 laboratories carried out by the EBC
Analysis Committee in 2008 on the 17th EBC Standard Malt, in which
our laboratory participated. According to these data, it was possible to
estimate an extended uncertainty of 2.40 from a R95 value of 3.4.
Moreover, it was possible to estimate a SEL of 0.41 from the r95 value
of 1.2. Our reference values, chemically determined, ranged from 32.55
to 49.70, with amean of 41.13. The determination range of themethod is
from 30 to 50, with a mean of 40.
Software. All computations involving the calibration model

(spectral data pretreatments, selection of the spectral data set, construc-
tion of PLS regression model and its validation) were carried out by the
MATLAB software (version 7.6) and in-house routines.
Data Analysis. A calibration model was developed using PLS1

regression.17,20,21 Spectra were preprocessed by extended multiple
scatter correction (EMSC),18,19 after which the spectral range between
7.501.9 and 4.597.6 cm-1 (1330-2175 nm) was selected. Outlier
samples with high error and high leverage (23 out of a total of 316) were
excluded from the calibration data set. The PLS1 algorithm normally
calculates several auxiliary statistics during the course of the computations.
These calculations are specified by the ASTM practice E 1655-01 for
quantitative NIR analysis.20 One of these auxiliary statistics is the standard
error of validation (SEV),more familiarly known as rootmean square error
prediction (RMSEP) or root mean square error of cross validation
(RMSECV) in the case of cross-validation. The calculation is the same
for both the parameters, and it is performed as described in eq 2 whereM is
number of the samples in the validation set. This parameter has been
calculated for prediction using 1 to 15 PLS1 factors.

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼ 1

ðyi-true - yi-predictedÞ2
vuut ð2Þ

For the chosen number of PLS1 factors, other auxiliary statistics were
calculated, such as the slope of the calibration models and the bias.

In the order to check the long time stability of the NIR calibration
models, four different validation test were applied:

Strategy A: The regular leave-one-sample-out cross-validation pro-
cedure, with as many one-object validation subsets as the
number of samples included in the calibration set.
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Strategy B: Two more challenging cross-validation leave-N-samples-
out, with N = 73 (25% of samples) and N = 3 (1% of
samples), were applied in order to verify how the RMSEP
values change by the number of samples used to calculate
it. The selection of the samples excluded was random.
Because the error will change according to chance, the
two resamplings were repeated 200 times.

Strategy C: Three test-set validations, where the validation samples
were chosen according to the year of collection, were
applied in the order of check if the calibrationmodel has a
stable predictive performance on samples collected in
different years. Three different data blocks were defined
and used for the validation: 2006, 2007, and 2008 þ
2009. Two of these three data blocks were used to
develop the calibration, and the third one was used as
validation set. This “extrapolation” test should give a
good indication of the model performance for coming
years.22

Strategy D: Three more extreme test-set validations were applied,
using the same three year based data blocks. In this case,
just one data set was used as a calibration set, another
block was used to find the optimal number of PLS1
factors, and the third block is used as validation set. In the
first validation, samples from 2006 were used as calibra-
tion set, samples from 2007 were used for rank determi-
nation and samples from 2008 were used as validation
set; this test was repeated while circulating the different
year/data blocks (2006 validation, 2007 calibration, 2008
rank determination and 2006 rank determination, 2007
validation, 2008 calibration).

’RESULTS AND DISCUSSION

All the barley NIR absorption spectra have been collected
against a gold-coated background, which is not expected to
change over time. However, trends over time could be likely
connected to (small) instrument changes. In order to check for
instrumental changes over the four year period of sample
collection a principal component analysis (PCA15) of the gold-
coated background single beam spectra was performed (see
Figure 1). The raw gold-coated background single beam spectra
are shown in Figure 1a. Next, the spectral data were mean
centered and a PCA was performed. From the plot in Figure 1c,
where scores on the first principal component are shown as a
function of collection time, we observed no obvious systematic
trend. The corresponding loading vector (Figure 1b) resembles
the average single beam spectrum. The second score (Figures 1b
and 1d) shows a (weak) trend over time associated with a
wavelength dependent change in the baseline and a noisy pattern
on the NIR water-bands. This trend was unexpected, considering
that during the collection time the lamp source was changed every
year and several checks to test the instrumental stability have been
performed, as explained in Materials and Methods. These back-
ground spectra will be used to turn flour measurements into
absorbance scales, and as such it is not possible to use the observed
trend directly.

To check the sample spectra a PCA was performed (see
Figure 2). The raw spectral data are shown in Figure 2a; they
have been mean centered before computing the PCA. Judging
from the scores plot in Figure 2c the spectra of the samples
collected during the year 2009 seem to differ from the others.
This difference is confirmed by plotting the scores of the second
principal component against the time of acquisition (Figure 2d),

where the last cluster appears to have a larger variation. This
effect was unexpected, because in order to correct the long-term
drifts affecting the reflectance/absorbance spectra, one reference
background was collected for each sample, as explained in
Materials and Methods. It could be due to a real difference of
these samples compared to the others, but it is likely a more
systematic (possibly instrumental or laboratory related) cause.
To eliminate part of the (undesired) spectral differences, ex-
tended multiple scatter correction (EMSC) was selected as
preprocessing step. This pretreatment is an expansion of the
multiple scatter correction (MSC). The EMSC algorithm mini-
mizes the signal variability caused by scatter from particulates in
the samples (following the basic idea of MSC) with the inclusion
of the wavelength dependency.18,19 A PCA analysis was per-
formed on the pretreated data (see Figure 3). From the scores
plot shown in Figure 3c we can observe that the deviation of year
2009 is reduced, possibly eliminated, compared to the other
years.

All the errors of prediction obtained by cross-validations or
test-set validations (RMSEPs) for 1 to 15 PLS1 factors are shown
in Figure 4. Figures 4a, 4b and 4c show the RMSECV values
obtained through the strategies A and B. Figures 4d, 4e and 4f
show the RMSEP values calculated through the strategy C and
compared with the RMSECV values calculated on the different
calibration sets. Figures 4g, 4h and 4i show the RMSEP values
calculated through the strategy D on the validation and the rank
determination sets, compared with the RMSECV values calcu-
lated on the different calibration sets. In Table 1 are shown the
most important figures of merit for the evaluation of the
calibration models: RMSECV, RMSEP, bias and slope of the
calibration.

The first model is based on leave-one-sample-out cross-
validation (strategy A), and RMSEP is calculated for up to fifteen
factors (Figure 4a). The curve has a minimum at eleven factors
with a prediction error of NK = 1.15. This value is lower than the
extended uncertainly of the reference method, which is NK =
2.40, but higher than the SEL value, which is 0.41. Checking the
agreement between the calibration model and the reference
method through the estimation of the confidence limit of the
predicted values,16 the result is that 100% of the samples felt into
the limit defined by eq 3:

ypredicted - R95 < ytrue < ypredicted þ R95 ð3Þ
To give an impression of the performance, Figure 5 shows the

predicted-versus-reference plot, which has a coefficient of corre-
lation (R-coefficient) of 0.895 for 11 PLS1 factors. From this
figure it is also possible to see that all samples collected in
different years show no appreciable deviations. It is also observed
that samples in the high range (NK > ∼45) show a systematic,
negative deviation from the predicted-versus-reference trend
line. These samples will have a large influence on the slope and
bias values reported in Table 1.

The number of factors (eleven) seems rather high despite the
size of the data set, and it is theoretically possible but very
unlikely in practice that the estimated prediction error is lower
than the reference method. Leave-one-sample-out cross-valida-
tion could be too optimistic, because excluding one sample gives
only a low perturbing effect on the model, while test-set valida-
tion could give a more realistic estimation of the predictive
ability. The main drawback is of course the data-economic
aspect: the number of samples during training/calibration is
reduced. One should always remember that estimates like
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RMSEP in eq 2 are statistics, and all statistics come with
uncertainty.

To get an impression of the reliability of the RMSEP values we
performed a resampling CV using 200 trials selecting 25%
(Figure 4b, Table 1) and 1% (Figure 4c, Table 1) at random as
validation set (strategy B). The figures show the mean RMSEP
value plus one standard deviation intervals from the 200 trails.
Excluding 1% of the data (Figure 4c) the perturbing effect on the
model is low (comparable with leave-one-sample-out CV in
Figure 4a), so it is possible to obtain a better result—lower value
for RMSEP—than excluding 25% of the data set (Figure 4c).

But, at the same time, we observe that the standard deviation is
higher for a 1% validation set. This can be explained by some
samples being very different from the others, either in true
reference value or due to measurement uncertainty. This differ-
ence in samples is averaged out by increasing the validation set to
e.g. 25% where the extreme samples are “hidden” among many
good samples.We also observe here that the uncertainty band for
leave-out-25% CV stabilizes around 5 PLS1 factors, while the
RMSEP value keeps (slowly) decreasing until 10 factors.

To mimic the situation of everyday use of the NIR model in a
quality control laboratory we apply the three year-blocks as test

Figure 1. Principal component analysis (PCA) of selected single beam background spectra: (a) spectra, (b) PCA loadings factors 1 (—) and 2 ( 3 3 3 ),
(c) scores factor 1 versus time of recording, (d) scores factor 2 versus time of recording.

Figure 2. Principal component analysis (PCA) of raw sample spectra: (a) spectra, (b) PCA loadings factors (—) and 2 ( 3 3 3 ), (c) scores factor 1 versus
scores factor 2, (d) scores factor 2 versus time of recording.
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sets of “next year” (strategy C), and the results are shown in
Figure 4d-f and in Table 1. For each new calibration trail, all the
samples previously excluded as outliers have been included again
in the validation set and the outliers are detected by calculating
the leverage and the Mahalonobis distance and estimating the
confidence limits of the predicted value. The first observation is
that the calibration model gives higher RMSEPs when 2007 is
used as a validation set (Figure 4e). From the fifth factor on, the
error of prediction calculated on the validation set is system-
atically higher. When 2006 is used as validation set, there is good
correspondence between the calibration and validation predic-
tion errors starting at about six factor PLS1 models (Figure 4d).

For 2008 þ 2009, errors are only modestly different starting
around factor five (Figure 4f). Overall the calibration model is
not able to give a good prediction on the set including samples
from 2007 (Figure 4e). It seems to be overfitted after the fifth
component. An explanation for these worse results could be that
the samples from 2007 are different from the others, even if they
cannot be considered as outliers; for all the number of checked
components at least the 95% of samples fall into the confidence
limit of eq 3. This was double checked, but no obvious change in
the instrument for this time period or exceptional/extreme
samples were detected. It should thus be a more subtle connec-
tion with the samples itself, something that could possibly occur

Figure 3. Principal component analysis (PCA) of EMSC preprocessed sample spectra: (a) spectra, (b) PCA loadings factors 1 (—) and 2 ( 3 3 3 ), (c)
scores factor 1 versus scores factor 2, (d) scores factor 2 versus time of recording.

Figure 4. Prediction errors of the different validation strategies (see text and Table 1 for details).
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again in future unknown samples. Factor models like PLS1 fit simu-
ltaneous variance in the predictor block (NIR spectra in this case),
correlated to the reference value (optimizing covariance).14,17,18 PLS1
is also an eigenvalue based modeling method, so the later factors (at
higher ranks), in combination with the low selectivity of NIR, make it
even more difficult to identify a possible cause of the differences in
behavior of different data blocks. Apparently the 2007 set has some
unique features not captured by the other years once the first five
factors are extracted. The first five factors appear common over all
data blocks (are “robust”). The difficulty in long-term effects in NIR
calibration is that the next year (2010, in our hypothesis) might look
more like 2006 or 2007, andwe do not knowwhich beforehand. This
might be an argument for a conservativemodeling strategy, not going
past five factors, sacrificing predictive performance.

The final validation challenge—strategy D where the three
year-blocks are applied for calibration, model complexity selec-
tion and validation—is shown in Figure 4g-i and Table 1. Note
that the calibration-set error is a pure fit error, by definition
monotonically nonincreasing as a function of model complexity.
In all the cases the RMSEP obtained are higher than any of the
previousmodels, but this is expected because just one-third of the
whole data set is used as calibration set to develop the model. We
also observed that all three rank-determination sets suggest a
PLS1 model complexity of five or six factors and the test sets
RMSEPs agree well with this choice.

In conclusion, the results shown in this paper illustrate that
one single performance criterion often is not sufficient to judge a
near infrared calibration model in the proper way. It can lead
to over- or underestimation of the model quality. Leave-one-
sample-out cross validation (strategy A) is too optimistic,
because excluding one sample has a low perturbing effect on
the model. In our case, the confirmation of this statement is an
estimated prediction error lower than the reference method. A
second observation is that the root mean squared error of
prediction should be considered not as a “single value” but
together with its uncertainty (strategy B). In fact, using three
year-blocks as test sets (strategy C) it was evident that the
calibration model is not able to give an equally good prediction
on the set including samples from 2007 and it seems to be
overfitting after the fifth component. This is confirmed by using
the same three year-based data blocks (strategy D). Of course, in
all these cases the RMSEP obtained for five or six components,
but also for eleven, are higher than the one obtained by leave-
one-out cross-validation. The overall conclusion is that we likely
need to be modest in reporting the expected prediction error.

Table 1. Results for Different Validation Strategiesa

validation strategy

samples calibration/

validation

PLS1

factors

cross-validation error

RMSECV (std)

prediction error

RMSEP slope bias

A CV leave-one-out 293/1 11 1.15 1.15 0.84 0.01

B CV leave-25%-out (�200) 220/73 11 1.20 (0.092) 1.20 (0.092) 0.79 -0.13

CV leave-1%-out (�200) 290/3 11 1.04 (0.451) 1.04 (0.451) 0.77 0.29

C test set 2006 (cal “—”; val “- - -”) 179/114 11 1.21 1.13 0.83 -0.08

test set 2007 (cal “—”; val “- - -”) 175/118 11 1.15 1.49 0.80 -0.37

5 1.60 1.52 0.61 0.11

12** 1.13 1.46 0.82 -0.33

test set 2008 þ 2009 (cal “—”; val “- - -”) 232/61 11 1.22 1.29 0.78 0.45

5 1.52 1.49 0.88 0.22

13** 1.22 1.08 0.81 -0.18

D cal 2006 (“—”), rank 2007 (“- - -”), val 2008 þ 2009 (“ 3 3 3 ”) 114/61 11 1.27 1.25 0.88 -0.74

5 1.47 1.81 0.84 1.03

6* 1.30 1.32 0.87 0.47

10** 1.22 1.12 0.88 -0.05

cal 2007 (“—”), rank 2008 þ 2009 (“- - -”), val 2006 (“ 3 3 3 ”) 118/114 11** 1.35 1.29 0.84 -0.09

5 1.50 1.71 0.56 0.21

13* 1.35 1.40 0.86 0.06

cal 2008 þ 2009 (“—”), rank 2006 (“- - -”), val 2007 (“ 3 3 3 ”) 61/118 11 1.22 1.70 0.72 0.15

5 1.42 1.58 0.56 -0.35

8* 1.18 1.65 0.69 -0.14

9** 1.21 1.48 0.69 -0.04
a See Figure 4. *Minimum PCs. **Minimum RMSEP.

Figure 5. Leave-one-sample-out cross-validation predicted versus ref-
erence NK values, 11 PLS1 factors with theoretical and fitted trend line.
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The model developed for five components can be considered
sufficiently reliable, allowing a determination of the Kolbach
index parameter with a RMSEP close to the uncertainly of the
reference method.
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